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Abstract

The focus of automatic text summarization research has ex-
hibited a gradual shift from extractive methods to abstractive
methods in recent years, owing in part to advances in neural
methods. Originally developed for machine translation, neural
methods provide a viable framework for obtaining an abstract
representation of the meaning of an input text and generating
informative, fluent, and human-like summaries. This paper
surveys existing approaches to abstractive summarization, fo-
cusing on the recently developed neural approaches.

1 Introduction
Nowadays online users suffer from an information overload:
the vast amount of fast-growing textual information on the
Web makes it challenging for a user to read all the material
she is potentially interested in. Automatic text summarization,
which is arguably one of the important high-level natural lan-
guage applications, seeks to alleviate this information over-
load problem by automatically creating a concise summary
of one or more text documents. Broadly, there are two kinds
of text summarization tasks. Extractive summarization aims
to create a summary by selecting a subset of the sentences
in the input text that maximizes the coverage of important
content while minimizing redundancy. In contrast, abstrac-
tive summarization aims to create an abstract representation
of the input text and use natural language generation tech-
niques to generate a summary. In comparison to extractive
summaries, abstractive summaries are more challenging to
produce, but are arguably a better approximation of human
summaries as they may contain expressions that do not exist
in the original text (Cohn and Lapata 2008). Table 1 shows
an input document and the corresponding human-generated
abstractive summary.

The focus of text summarization research has exhibited a
gradual shift from extractive techniques to abstractive tech-
niques in recent years, owing in part to significant advances
in the development of neural methods. Originally developed
for machine translation, neural methods have arguably rev-
olutionized the way abstractive summarization research is
conducted, creating new, exciting opportunities for summa-
rization and generation researchers.
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Source: the sri lanka government on wednesday an-
nounced the closure of government schools with immedi-
ate effect as a military campaign against tamil separatists
escalated in the north of the country.
Summary: sri lanka closes schools as war escalates.

Table 1: An example on abstractive summarization taken
verbatim from Zhou et al. (2017). The boldfaced words in
the summary do not appear in the input document.

While several surveys on text summarization have been
published over the years (Radev et al. 2002; Spärck Jones
2007; Lloret and Palomar 2012; Nenkova and McKeown
2012; Saggion and Poibeau 2012; Allahyari et al. 2017), their
foci are extractive rather than abstractive summarization. Our
goal in this paper is to provide the AI audience with a timely
survey on abstractive summarization.

2 Evaluation Methods
Two types of evaluation methods are typically used to eval-
uate machine-produced summaries: manual evaluation and
automatic evaluation.

In manual evaluation, human judges are asked to choose
the best summary among several candidates by manually
scoring each one along multiple dimensions of quality such
as accuracy, clarity, and completeness (Greenbacker 2011).
However, as manual evaluation is time-consuming and is
particularly inefficient for large-scale evaluations, there have
been a lot of attempts to develop automatic evaluation meth-
ods. For this reason, several automatic evaluation metrics
have been developed. The widely-used metrics include (1)
BLEU (Papineni et al. 2002), which was originally devel-
oped to evaluate machine translation systems; (2) METEOR
(Denkowski and Lavie 2014), which addresses BLEU’s weak-
ness when applied to low-resource languages and has a better
correlation with human judgment at the sentence/segment
level than BLEU; (3) Pyramid (Nenkova et al. 2007), a well-
known method for evaluating content selection in summariza-
tion; and (4) ROUGE (Lin 2004), a recall-based evaluation
metric for summarization. Being one of the most popular
metrics, ROUGE has several commonly used variants, such
as ROUGE-N, which computes the n-gram recall between a
candidate summary and a reference summary; ROUGE-SU,
which uses skip-bigrams and unigrams to measure recall;

9815



and ROUGE-L (Longest Common Subsequence), which re-
quires in-sequence but not consecutive matches that reflect
sentence-level word order n-grams.

Large-scale summarization evaluation efforts sponsored
by the U.S. government, such as SUMMAC (1996–1998)
(Mani et al. 2002), DUC (2000–2007) (Over et al. 2007), and
TAC (2008–present), have played an important role in design-
ing evaluation standards over the years. However, designing
appropriate metrics for automatically evaluating summaries
is challenging, and the definition of what constitutes a good
summary remains largely an open question.

3 Datasets
Next, we describe several datasets that have been extensively
used to evaluate automatic summarization systems.

DUC The summarization evaluations conducted as part of
the NIST-sponsored Document Understanding Conference
(DUC) (2000–2007) series (Over et al. 2007) and DUC’s suc-
cessor, the Text Analysis Conferences (TACs) (2008–now),
have provided a set of annotated datasets for training and
evaluating text summarization systems, focusing on the eval-
uation of generic and focused summaries of English news-
paper and newswire articles. The DUC corpora (2000–2007)
are popularly used to evaluate the vast majority of existing
abstractive summarizers. However, as these corpora are rela-
tively small, they do not provide enough data typically needed
to train neural models.

Annotated English Gigaword Annotated English Giga-
word is another popular corpus for abstractive summarization
research. In comparison to the DUC corpora, Annotated En-
glish Gigaword is considerably larger. It contains nearly ten
million documents (over four billion words) of the original
English Gigaword Fifth Edition from various domestic and
international news services over the last two decades, provid-
ing plentiful data needed to train neural models. To build a
summarization dataset from Annotated English Gigaword,
Rush et al. (2015) automatically create a source-summary
pair from each article by using the first sentence of the article
as the source and its headline as the summary.

CNN/Daily Mail For each story in the CNN/Daily Mail
corpus, Nallapati et al. (2016) came up with a human sum-
mary. This corpus has 286,817 training pairs, 13,368 valida-
tion pairs and 11,487 test pairs, and has been widely used in
many abstractive summarization tasks. Not only does this cor-
pus provide plentiful training data, but it has two interesting
aspects. First, in comparison to the documents in Gigaword
and DUC, those in CNN/Daily Mail are much longer (781
tokens on average), thus yielding a comparatively more chal-
lenging summarization task. Second, unlike Gigaword, which
has often been criticized for only having headlines as sum-
maries, CNN/Daily Mail contains multi-sentence summaries
(3.75 sentences or 56 tokens on average), and can therefore
stimulate research on multi-sentence summary generation
from long documents.

TAC 2010 The TAC 2010 summarization track pioneers
the guided summarization task, where the goal is to create a

WHAT: what happened
WHEN: date, time, other temporal markers

WHERE: physical location
PERPETRATORS: persons/groups initiating the attack

WHY: reasons for the attack
WHO AFFECTED: affected individuals

DAMAGES: damages caused by the attack
COUNTERMEASURES: rescue efforts, prevention efforts

Table 2: Aspects of TAC 2010’s guided summarization task
for the Attacks category.

100-word summary of a set of 10 newswire articles for a given
topic within a predefined category given a list of aspects rele-
vant to each category. For example, Table 2 shows the aspects
that a summary should address for the Attacks category. The
documents released as part of the guided summarization task
has been widely used for abstractive summarization (Genest
and Lapalme 2012).

AMI The AMI Meeting Corpus consists of 100 hours of
meeting recordings and includes 139 multi-party meetings
along with their corresponding extractive and abstractive
summaries (Carletta et al. 2006). This corpus has sparked a
lot of recent research on meeting summarization.

Other corpora Other notable corpora for summarization
research that have been introduced over the years include
TIPSTER (Mani et al. 2002), the Chinese corpus LCSTS (Hu
et al. 2015), the IELTS summary corpus (Fang et al. 2016), a
news corpus (Hu et al. 2015), a chat corpus (Zhou and Hovy
2005; Uthus and Aha 2013) and an email corpus (Ulrich et
al. 2008).

4 Classical Approaches
In this section, we introduce classical approaches to abstrac-
tive summarization, using the term “classical” to broadly
refer to any approach that is not neural-based.

Early Work
Early approaches to abstractive summarization include: (1)
sentence compression (Cohn and Lapata 2009), which aims
to create a grammatical summary of a given sentence; (2)
sentence fusion (Barzilay and McKeown 2005; Filippova and
Strube 2008), which involves using bottom-up local multi-
sequence alignment to identify phrases conveying similar
information and statistical generation to combine common
phrases into a sentence; and (3) sentence revision (Tanaka et
al. 2009), which generates sentences not found in the input
and synthesizes information across sentences.

Fully Abstractive Summarization
The aforementioned approaches offer little improvement over
extractive methods, however. This motivates the development
of a fully abstractive approach, which typically contains three
subtasks performed in a pipeline fashion: information extrac-
tion, content selection, and surface realization.
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Information extraction Information extraction aims to ex-
tract important information from the input text. Many abstrac-
tive summarizers focus on extracting phrasal-level informa-
tion such as noun phrases (NPs) and verb phrases (VPs) to-
gether with their contextual information (Genest and Lapalme
2012; Bing et al. 2015). Mehdad et al. (2014) employ query-
based extraction, which aims to extract important contents
using automatically generated queries and filter contents that
have a low probability of being included in a summary. Gen-
est and Lapalme (2012) extract Information Items (INITs),
which they define as the smallest element of coherent infor-
mation in a sentence. Concretely, an INIT is defined as a
dated and located subject-verb-object triple.

Some domain-specific summarizers make use of knowl-
edge of the category, topic, or domain of the input to guide the
kind of information to be extracted (Wang and Cardie 2013).
Recall from the previous section that in guided summariza-
tion, the aspects for a category (e.g., Attacks) are given. As a
result, extraction rules can be designed based on abstraction
schemas specific to a certain category to extract the desired
information. For example, a killing schema requires that the
killer, the verb that triggers the killing event, and the victim
be extracted. In some cases, however, the input document
covers multiple topics, which make manual pre-tagging of
the document difficult. For example, in meeting transcript
summarization, several topics may be mentioned during the
meeting (Oya et al. 2014), in which case topic segmentation
can be applied to identify the topics.

Content selection Content selection aims to select a sub-
set of the candidate phrases extracted from the information
extraction step for inclusion in the final summary, typically
subject to length constraints. For instance, Genest and La-
palme’s (2012) guided summarizer heuristically selects the
candidate phrases most frequently mentioned for an aspect.

While heuristic methods can be used for content selection,
many researchers have resorted to Integer Linear Program-
ming (ILP) (Murray et al. 2010; Woodsend and Lapata 2011;
Bing et al. 2015). As a constrained optimization framework,
ILP can be used to optimize an objective function subject to
a set of linear constraints. When applied to content selection,
the objective function is a weighted sum of a set of binary
variables. Each variable represents a candidate phrase and has
the value 1 if and only if ILP decides to select it for inclusion
in the final summary. The weight associated with each vari-
able indicates the importance of the corresponding candidate
phrase. Bing et al. (2015), for instance, estimate the salience
of each candidate phrase based on its position and its gram-
matical role in the input document and use the salience score
as its weight. The linear constraints encode length constraints.
For instance, one constraint limits the number of words in
each sentence in the summary.

The key advantage of employing ILP for content selection
is that the decision of which phrases to include in the sum-
mary is made jointly and not independently of other phrases.
This contrasts with non-optimization approaches, where such
decisions are typically made in a heuristic, sequential, and
therefore potentially suboptimal manner.

Surface realization Surface realization aims to combine
the candidates selected in content selection using grammati-
cal/syntactic rules to generate a summary. An existing natural
language generator such as SimpleNLG (Gatt and Reiter
2009) can be adapted to generate the actual sentences.

Graph-based Methods
In graph-based methods, graphs are used to implement the
aforementioned three abstractive summarization subtasks.
Graphs are chosen because of their expressiveness: they fa-
cilitate the extraction of not only the concepts in an input
document but also the potentially complex and abstract rela-
tions between them (Greenbacker 2011).

For example, event semantic link networks (ESLNs) have
been used for joint information extraction and content selec-
tion (Li et al. 2016). Given an input text, an ESLN can be
constructed to provide an abstract representation of the text.
Specifically, each node corresponds to an event mentioned
in the input text, where an event is composed of an event
trigger/action and its arguments. An edge between two nodes
encodes the semantic relation between the corresponding
events. After network construction, ILP can be applied to
this network to perform information extraction and content
selection (i.e., selecting a subset of nodes for generating the
summary), using constraints similar to Bing et al.’s (2015)
(e.g., the length constraints) as well as constraints defined on
the semantic relations (e.g., the nodes should be chosen such
that the resulting graph remains connected).

As another example, entailment graphs can be used for
content selection via detecting redundant sentences as follows
(Mehdad et al. 2014). If two sentences have the same meaning
(bidirectional entailment), one of them will be removed. If
one of them is more informative than the other (unidirectional
entailment), the less informative one will be removed. If both
of them have some parts that do not overlap with the other,
none of them will be removed.

The word graph method, which encodes the sentences
into a graph, is usually used in generation (Filippova 2010).
Briefly, a word graph is a weighted directed graph with words
as nodes and is built by incrementally adding sentences to
it. In this graph, words that share some sort of similarities
are mapped onto the same existing node, and the summary is
generated by selecting the best path in the graph. For instance,
after constructing a word graph, Mehdad et al. (2014) propose
a scoring function for ranking viable paths based on coverage,
fluency, and path weight.

Template-based Methods
Template-based methods are motivated by the observation
that human summaries of a given type (e.g., meeting sum-
maries for accomplishing a certain task) have common sen-
tence structures, which can be learned from the human sum-
maries in the training set and encoded as templates. Given an
input document, a summary can be generated by filling the
slots in the best fitted templates learned for this type of doc-
uments. Template-based methods typically consist of three
steps: (1) learning the templates from the human summaries;
(2) extracting important phrases from the input document;
and (3) generating a summary based on the filled templates.
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For instance, Oya et al. (2014) propose a robust template-
based method for meeting summarization. In step 1 (template
learning), a template is first generated from a sentence of
each human summary in the training set by replacing each
NP in the sentence with a blank slot that is labeled with
the hypernym of the NP’s head using WordNet. Then, these
templates are clustered based on their root verbs. Finally,
the templates in each cluster are further generalized using
the word graph method described in the previous subsection.
In step 2 (keyphrase extraction), the important phrases for
each topic segment of the input document are extracted and
labeled with their hypernyms. Finally, in step 3 (generation),
the templates having the highest similarity with each topic
segment of the meeting are selected. As both the selected
phrases and the most similar template have hypernym labels,
candidate summary sentences can be generated by filling
each template with matching labels. Since a potentially large
number of sentences can be generated for each topic segment,
a sentence ranker is trained to rank the generated sentences
in each segment. The highest ranked sentence for each topic
segment will be selected for inclusion in the summary. The
selected sentences are sorted by the chronological order of
the topic segments in the input document.

5 Neural Approaches
In classical methods to abstractive summarization, informa-
tion extraction, content selection, and surface realization are
all challenging subtasks. In contrast, neural methods offer an
end-to-end approach to abstractive summarization, learning
how to abstract from the source document and generate the
corresponding summary in one network. Being the first to
apply neural machine translation to abstractive summariza-
tion, Rush et al.’s (2015) work sparks a novel way of building
abstractive summarizers. Since then, neural methods have
become the core technology underlying the vast majority of
abstractive summarizers. While it is fairly easy to keep track
of the information that is being extracted and selected in clas-
sical models, there is comparatively less control over what
is learned and how information is encoded in neural models.
Below we introduce the key ideas that emerged from neural
abstractive summarization research.

The Encoder-Decoder Framework
The vast majority of existing neural abstractive summariza-
tion models are sequence to sequence (seq2seq) models,
which employ the encoder-decoder architecture (Sutskever et
al. 2014). This architecture is composed of an encoder and
a decoder. An encoder encodes source sentences as a list of
fixed-length vector representations, each of which captures a
word and its surrounding context. A decoder then outputs a
summary based on the encoded vectors. The architecture is
jointly trained on document-summary pairs to maximize the
probability of a correct summary for each input document.

Encoding
Encoding has similar aims as information extraction in clas-
sical approaches: they both focus on capturing information
relevant to summary generation. Encoding involves two key

steps: (1) data preprocessing and (2) encoder selection, as
described below.

Preprocessing To preprocess input sentences, many mod-
els use a word-based representation, but for some languages
(e.g., Chinese), a character-based representation may be a
better alternative as it can avoid errors introduced by word
segmentation (Chang et al. 2018). Some use word vectors pre-
trained on large corpora via word2vec (Mikolov et al. 2013)
or GloVe (Pennington et al. 2014), while others learn the
word embeddings during training (See et al. 2017).

Encoding long documents without losing important infor-
mation is challenging. One way to address this problem is
to compress a (long) input document into a more compact,
informative representation by leveraging extractive methods
to select representative sentences (Chen and Bansal 2018;
Hsu et al. 2018; Lebanoff et al. 2018).

There have also been recent attempts to improve abstrac-
tive summarization by exploiting the background knowledge
extracted from knowledge bases. For example, Amplayo et al.
(2018) extract additional knowledge about the entities in the
input document (e.g., the matches won by a football team)
and subsequently use the resulting external knowledge to
guide the decoder to generate better summaries.

Encoder selection Aiming to learn a better abstract repre-
sentation of the input text and control the information flow
from the encoder to the decoder, some researchers have fo-
cused on selecting or designing their encoders.

Rush et al. (2015) construct their encoder-decoder archi-
tecture with a convolutional neural network (CNN) as the
encoder and a feed-forward neural network as the decoder.
However, CNNs are typically replaced by recurrent neural
networks (RNNs) in recent methods in part because CNNs
lack the ability to process long sequences (Chopra et al. 2016;
Nallapati et al. 2016). To address this problem, long short-
term memory networks (LSTMs) (Hochreiter and Schmidhu-
ber 1997) are frequently applied instead (Nema et al. 2017;
Pasunuru et al. 2017; Paulus et al. 2017; See et al. 2017;
Tan et al. 2017). In some cases, GRUs (Cho et al. 2014)
have been shown to be a better alternative to LSTMs (Chen
et al. 2016; Kim et al. 2016; Li et al. 2017; Zhou et al.
2017), as they have fewer parameters and are faster to
train while achieving comparable results (Chung et al. 2014;
Greff et al. 2017).

Recent research on encoding has focused on designing
complicated networks for leveraging existing information in
long documents (Çelikyilmaz et al. 2018; Cohan et al. 2018).
Nevertheless, how to encode long sequences remains an open
question in seq2seq models.

Decoding
A decoder is commonly implemented using an RNN. At each
timestep, the RNN takes as input two vectors, a representa-
tion of the previously generated words and a representation
of the input sequence obtained via the encoding step, and
produces a vector matching the size of the vocabulary, which
is subsequently turned into a distribution over the vocabu-
lary using a softmax layer. Given this distribution, either the
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most probable word is generated as the output or, more com-
monly, the k-best paths up to this timestep are identified via
a beam search, where k is the beam size (Rush et al. 2015;
Chopra et al. 2016; Nallapati et al. 2016; Paulus et al. 2017;
See et al. 2017).

Improvements to the Encoder-Decoder Framework
Numerous attempts have been made to improve the encoder-
decoder framework for abstractive summarization.

Attention Some words/phrases are more important than
others in a document. These important words/phrases are
more likely to appear in a summary than their less important
counterparts. To identify important words/phrases, one can
employ attention.

The key idea behind attention is to feed the decoder with
an extra input vector (known as the context vector) that en-
codes the important phrases (Bahdanau et al. 2014). At a
high level, attention can first be used to compute a weight
for each element in each timestep indicating its importance,
and the resulting weight distribution over the elements can
then be used to compute the context vector. Intuitively, the
context vector amplifies the useful information from the in-
put processed so far (i.e., information associated with high
weights in the attention distribution) and de-emphasizes the
unimportant information (i.e., information associated with
low weights in the attention distribution).

Depending on whether we employ global (sentence-level)
or local (word-level) attention, the resulting neural model
has the ability to retrieve important information at different
levels of a document (Luong et al. 2015; Nallapati et al. 2016;
Tan et al. 2017; Çelikyilmaz et al. 2018; Cohan et al. 2018).
Attention can also be applied to networks that do not employ
the encoder-decoder framework (Vaswani et al. 2017).

Distraction/Coverage While attention enables us to iden-
tify and focus on important phrases, it is not without its prob-
lem. Researchers have observed that the same region/content
could be overly focused, thereby leading to redundancy in
the summary. Distraction can be used to avoid focusing on
the same content (Nema et al. 2017). The idea is to employ a
constraint that reduces the probability of the repeated content
or the weight associated with that content.

Chen et al. (2016) show that distraction can be applied to
the context vector, the attention weight vectors, and decoding,
although the application of distraction is not limited to these
three places. For example, in the training step, they imple-
ment distraction by subtracting the history context vector
from the current context vector, effectively distracting the
network from content that has been attended to previously.

Some researchers refer to distraction as coverage (See
et al. 2017). Coverage is a concept originated in statistical
machine translation (Koehn et al. 2007) and is subsequently
used for neural machine translation by Tu et al. (2016). See
et al. (2017) define a coverage loss which, when compared to
the original loss, has an additional penalty term for repetition
(i.e., more repetition implies less coverage).

Pointer networks/Copy mechanism Frequently occur-
ring words are likely to be identified as important words by

an attention mechanism. In contrast, it is commonly known
that neural sequence models lack the ability to generate rare
words and out-of-vocabulary (OOV) words, even if the gen-
erated context makes the prediction unambiguous.

To alleviate this problem, Vinyals et al. (2015) propose
a pointer network, which copies an element from the input
directly to the output. More generally, pointers can be seen
as an extension of attention that allows us to focus on those
rare or OOV words that are important.

If we use a pointer network to point to a region of the input
rather than just a rare/OOV word, it is known as copying. In
the context of abstractive summarization, the copy mecha-
nism allows us to copy a segment of the input directly to the
output (Gu et al. 2016; Paulus et al. 2017; See et al. 2017;
Çelikyilmaz et al. 2018; Cohan et al. 2018). Specifically, the
decoder is equipped with a “switch” that determines whether
a generator or a pointer should be used at each timestep. If
the switch is turned off, the decoder will generate a pointer
to a word-position in the input sentence and copy the corre-
sponding word to the summary (Nallapati et al. 2016).

Although the pointer/copy mechanism has proven useful
for generating readable summaries, it leads to an obvious
problem: the summaries may resemble those generated by ex-
tractive approaches, particularly when the decoder overuses
the pointer. Therefore, in order to generate a summary that
is more abstractive than extractive, one should control the
extent to which the pointer is applied.

Other linguistic information can be used in conjunction
with the copy mechanism to yield better summaries. For
instance, when using the copy mechanism, Song et al. (2018)
leverage syntactic structure, copying a word from the input
to the summary if “it contains salient semantic content, or it
serves a critical syntactic role in the source sentence”. The
syntactic label of each word, such as its part-of-speech tag
and its depth in the associated dependency parse tree, is
encoded by the encoder network.

Reinforcement learning The encoder-decoder framework
has two weaknesses. First, while the network is trained to
maximize the probability of generating a correct summary,
the generated summary is evaluated by automatic metrics
such as ROUGE. In other words, minimizing the maximum-
likelihood (ML) loss is not necessarily equivalent to optimiz-
ing the desired evaluation metric. Second, while the decoder
is trained on gold summaries, it decodes the next word by us-
ing the generated summary from the last timestep during test
time. In other words, decoding performance can be adversely
affected by this exposure bias (Ranzato et al. 2015), which
stems from the fact that “the network has knowledge of the
ground truth sequence up to the next token during training
but does not have such supervision when testing” (Paulus et
al. 2017).

To address these problems, researchers have recently lever-
aged Reinforcement Learning (RL) (Paulus et al. 2017;
Pasunuru and Bansal 2018). RL enables us to train an agent
to interact with a certain environment so as to maximize
a reward. With the goal of finding an optimal policy (i.e.,
the best action to take for each state), RL can be used to
solve optimization problems that are not differentiable. For
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sequence generation, rather than minimizing the ML loss,
we can maximize a reward based on the desired evaluation
metric or even employ a hybrid training objective that not
only minimizes the ML loss but also optimizes the desired
metric (Paulus et al. 2017). This allows RL to make global
(sentence-level) decisions rather than local (word-level) deci-
sions during the generation process (Çelikyilmaz et al. 2018;
Pasunuru and Bansal 2018): in each timestep, the model can
be trained to select a word that maximizes (global) evalua-
tion metrics such as ROUGE rather than making a decision
based purely on the words that have been generated thus far.
Note that RL also addresses the aforementioned exposure
bias problem, as gold summaries do not need to be used at
each step in the training process.

6 The State of the Art
Table 3 shows the ROUGE scores of state-of-the-art sum-
marizers on the most frequent used evaluation corpus in
recent years, the CNN/Daily Mail dataset. Several observa-
tions deserve mention. First, in comparison to an encoder-
decoder RNN whose pointer components are trained to ac-
tivate only for OOV words and named entities (row 1), a
pointer-generator network that can freely learn when to use
the pointer (row 2), especially when used in conjunction with
coverage (row 3), yields better results. Second, comparing
a model that employs RL (row 5) with one that uses a ML
objective (row 4), RL helps to generate better summaries at
the sentence level, achieving the highest ROUGE-L score.
Third, there have been attempts to combine ML and RL: de-
pending on how they are combined, the performance of the
resulting system may increase (row 7) or decrease (row 6).
Finally, the extractive summarizers (rows 8–10) slightly out-
perform almost all of the non-RL-based abstractive summa-
rizers (rows 1–4). One reason is that extractive summarizers
make sentence-level decisions, which enable the creation of
summaries that are more readable than abstractive summaries.
However, making sentence-level decisions also makes it dif-
ficult for them to retain all of the important contents if these
contents are scattered throughout the input text. This could
explain why extractive summarizers underperform the RL-
based abstractive summarizers: RL can address an abstractive
summarizer’s weakness in making sentence-level decisions.

7 Concluding Remarks
Despite recent advances in neural abstractive summariza-
tion, state-of-the-art summarization results are still far from
satisfactory. Producing an informative, fluent, and readable
summary remains a difficult task. Below we discuss several
avenues of research that we believe are worth pursuing.

Text simplification Encoding long sentences remains a
challenge for neural approaches to abstractive summarization.
One could leverage the techniques from text simplification to
convert a complex sentence into simpler ones, which could
be encoded more easily by neural models.

Phrase-based models Considering the fact that most of
the classical summarizers are phrase-based, we believe that a
phrase-based representation can capture the semantics of text

Model R1 R2 RL

words-lvt2k-temp-att (Nallapati et al. 2016) 35.5 13.3 32.7
pointer-generator (See et al. 2017) 36.4 15.7 33.4
pointer-generator+coverage (See et al. 2017) 39.5 17.3 36.4
ML (Paulus et al. 2017) 38.3 14.8 35.5
RL (Paulus et al. 2017) 41.2 15.8 39.1
ML+RL (Paulus et al. 2017) 39.9 15.8 36.9
DCA ML+SEM+RL (Çelikyilmaz et al. 2018) 41.7 19.5 37.9
SummaRuNNer (Nallapati et al. 2017) 39.6 16.2 35.3
lead-3 (See et al. 2017) 40.3 17.7 36.8
REFRESH (Narayan et al. 2018) 40.0 18.2 36.6

Table 3: Empirical results of different summarizers on the
CNN/Daily Mail dataset expressed in terms of ROUGE-1
(R1), ROUGE-2 (R2), and ROUGE-L (RL).

more accurately for neural models. One can design a hybrid
phrase-word representation that combines the advantages of
word- and phrase-based representations (Chang et al. 2018).
With a hybrid representation, while the vocabulary size can
be larger, the decoder can generate a phrase in one step.
Alternatively, we can enable a pointer to have a extra state for
making phrase-level decisions. For example, a pointer can
select more words at each step if two or more consecutive
words have high probabilities.

Multi-document abstractive summarization Virtually
all recent work on neural abstractive summarization has
focused on summarizing a single document. Few systems
are designed for multi-document abstractive summarization
(Lebanoff et al. 2018; Liao et al. 2018). Note that we can treat
neural multi-document abstractive summarization as a longer
version of single-document summarization after preprocess-
ing the input documents using classical multi-document sum-
marization methods. Specifically, we can first remove re-
dundant information from the set of input documents by (1)
clustering the sentences in the input documents, (2) identi-
fying the representative sentence in each of the top clusters,
and (3) forming a single document using the resulting sen-
tences and reordering them as needed. Then, we can apply
the single-document abstractive summarization techniques
discussed earlier to produce an abstractive summary of our
artificially synthesized document.

Evaluation on different text types The vast majority of
the neural models for abstractive summarization are evalu-
ated on corpora composed of news articles because (1) news
articles are well-organized and have predicable structures and
(2) news corpora, which significantly outnumber other kinds
of corpora, provide more data needed to train data-driven
models. We believe it is worthwhile to investigate the appli-
cability of neural models to corpora other than news, such as
those composed of meetings and conversations.

Beyond seq2seq models While seq2seq models are exten-
sively used for neural abstractive summarization, it is hard to
interpret their results. For instance, it is hard to understand
what exactly is being learned. This in turn can make it hard
to generalize the resulting model to other datasets. In the
long run, interpretable models for abstractive summarization
should be investigated.
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Extrinsic evaluation Whether commonly-used evaluation
metrics such as ROUGE are sufficient for evaluating abstrac-
tive summaries is debatable, as the same content can be real-
ized using many different words/phrases. Hence, in addition
to performing an intrinsic evaluation, we may consider evalu-
ating the correctness and usefulness of abstractive summaries
in a downstream natural language application, such as ques-
tion answering.
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